Access Journal

Access to Science, Business, Innovation in the Digital Economy
The journal uses continuous publication model. Current issue is in progress.
Published Online: Nov 19, 2024

Economic Evaluation of Land in Agribusiness: Soil Fertility Factor

Published Online: Nov 19, 2024
Views: 164
Downloads: 32
Download PDF

Abstract:
The study is devoted to analysing the economic role of one of the main factors of agribusiness - soil fertility. It is of great importance in the survival of ecosystems and directly affects crop productivity, which determines a country’s GDP. The economic assessment of land in agribusiness is undoubtedly associated with challenges such as predicting soil fertility, which largely correlates with the attractiveness of investment for certain start-ups in agribusiness. This study proposes a simple and understandable model for the economic assessment of land productivity based on an analysis of modern scientific literature and expert opinions. Methods and results: this research proposes a generative model that utilises the collected data to generate additional soil sample data. The produced data are manually reviewed by an expert and validated using a Student’s t-hypothesis test. These data are labelled using a variety of machine learning classifiers. We use SHAP and LIME to interpret the performance of the machine learning classifiers. The effects of various soil constituents on fertility are thoroughly examined. A thorough discussion of each feature’s contribution to the model’s prediction is also included. Additionally, the features’ correlation is discussed. The interpretations presented in this study are transformed into practical ideas for the agribusiness sector through economic efficiency taking into account discounted future income. In addition, the model proposed in this article indirectly contributes to the balance of investment and profit in agribusiness start-ups. The study’s results may be helpful to those conducting economic valuation of land and investment funds, individuals planning agribusiness start-ups, and researchers in the related fields of the study.
Keywords:
Pages:
25-45
JEL Classification:
C52, E22, G11, Q24, R14
How to cite:
Dash, R. K.., Krivins, A., Kaze, V. (2025). Economic Evaluation of Land in Agribusiness: Soil Fertility Factor. Access to science, business, innovation in the digital economy, ACCESS Press, 6(1), 25-45, https://doi.org/10.46656/access.2025.6.1(2)
References:
  • Abera W., Tamene, L., Tesfaye, K. (2022). A data-mining approach for developing site-specific fertiliser response functions across the wheat-growing environments in Ethiopia. Experimental Agriculture, Vol.58:e9. doi:10.1017/S0014479722000047
  • Abuseridze, G., Agapova, O., & Petrova, M. (2024). WTO and the Future of Global Business Tourism: Trends and Challenges. Shifts in Knowledge Sharing and Creativity for Business Tourism, 264-280. https://doi.org/10.1007/978-3-031-60549-9_5
  • Abuseridze, G., Petrova, M., Zahars, V., & Tumalavicius, V. (2022). Transformation of Georgia’s trade policy strategy: from frailty to sustainability. Access Journal: Access to Science, Business, Innovation in the digital economy, ACCESS Press, 3(1): 43-52. https://doi.org/10.46656/access.2022.3.1(4)
  • Abuseridze, G (2020). Political Stability and Trade Agreements. Bulletin of the Georgian National Academy of Sciences, vol. 14, Issue 4, pp. 139-145
  • Aier, J., Panda, K.K., Siddiqui, N., Paul, D. (2024). Potential role of post-harvest management in agribusiness. BIO Web of Conferences, 110, art. no. 04001, DOI: 10.1051/bioconf/202411004001
  • Aksoy, S., Yildirim, A., Gorji, T. (2022). Assessing the performance of machine learning algorithms for soil salinity mapping in google earth engine platform using sentinel-2a and landsat-8 oli data. Advances in Space Research 69(2):1072–1086. https://doi.org/10.1016/j.asr.2021.10.024
  • Al Masmoudi, Y., Bouslihim, Y., Doumali, K., Hssaini, L., & Ibno Namr, K. (2021). Use of machine learning in Moroccan soil fertility prediction as an alternative to laborious analyses. Modeling Earth Systems and Environment, Vol.8, (3), pp. 3707 - 3717
  • Annosi, M.C., Appio, F.P., Brenes, E.R., Brunetta, F. (2024). Exploring the nexus of digital transformation and sustainability in agribusiness: Advancing a research agenda. Technological Forecasting and Social Change, 206, art. no. 123587, DOI: 10.1016/j.techfore.2024.123587
  • Bekchanov, M., Mirzabaev, A. (2018). Circular economy of composting in Sri Lanka: Opportunities and challenges for reducing waste related pollution and improving soil health. Journal of Cleaner Production, Vol.202, pp. 1107-1119. DOI: 10.1016/j.jclepro.2018.08.186
  • Blaikie, P. (2016). The political economy of soil erosion in developing countries. The Political Economy of Soil Erosion in Developing Countries, pp. 1-188. DOI: 10.4324/9781315637556
  • Borisova, L., Sorokina, Y. (2024). Prospects for the development of agribusiness in conditions of economic instability. BIO Web of Conferences, 116, art. no. 07039, DOI: 10.1051/bioconf/202411607039
  • Chang, R., Chen, Z., Wang, D., Guo, K. (2022). Hyperspectral Remote Sensing Inversion and Monitoring of Organic Matter in Black Soil Based on Dynamic Fitness Inertia Weight Particle Swarm Optimization Neural Network. Remote Sensing. 2022; 14(17):4316. https://doi.org/10.3390/rs14174316
  • Chen, Y., Jia, J., Wu, C. (2023). Estimation on total phosphorus of agriculture soil in china: a new sight with comparison of model learning methods. Journal of Soils and Sediments. Vol.23(2), pp.998–1007. https://doi.org/10.1007/s11368-022-03374-x
  • Coulibali, Z., Cambouris, A.N., Parent, S.É. (2020). Site-specific machine learning predictive fertilization models for potato crops in Eastern Canada. PLoS One. 2020 Aug 7;15(8):e0230888. doi: 10.1371/journal.pone.0230888
  • Delavar ,M.A., Naderi, A., Ghorbani, Y. (2020). Soil salinity mapping by remote sensing south of Urmia Lake, Iran. Geoderma Regional 22:e00317. 10.1016/j.geodrs.2020.e00317
  • Dinuls, R., Mednieks, I. (2018). Non-parametric Classification of Satellite Images. ICoMS ’18: Proceedings of the 2018 1st International Conference on Mathematics and Statistics, 64-68, DOI: 10.1145/3274250.3274260
  • dos Santos, E.P., Moreira, M.C., Fernandes-Filho, E.I. (2023). Improving the general- ization error and transparency of regression models to estimate soil organic carbon using soil reflectance data. Ecological Informatics 77:102240. https://doi.org/10.1016/j.ecoinf.2023.102240
  • Durá, Alemañ, C.J. Law 5/2022, of November 29, of the Generalitat, on waste and contaminated soils for the promotion of the circular economy in the Valencian Community [Ley 5/2022, de 29 de noviembre, de la Generalitat, de residuos y suelos contaminados para el fomento de la economía circular en la Comunitat Valenciana] (2023) Actualidad Juridica Ambiental, 2023 (130), pp. 185-188
  • Durguti, E., Jurgelāne-Kaldava, I., Batenko, A., Krivins, A., Garskaite-Milvydiene, K. (2024) Data Security Risks and Their Prevention: Latvian Enterprises In The Context of Selected Countries. DOI: 10.2139/ssrn.4967730
  • Espolov, T., Espolov, A., Aitkozhina, D., Tireuov, K., Raiymbekov, S., & Suleimenov, Z. (2023). Comparing COVID–19 Budgeting Responses: New Budgeting Principles that Resulted from the Pandemic. Comparative Economic Research. Central and Eastern Europe, 26(4), 7–25. https://doi.org/10.18778/1508-2008.26.28
  • Gadanakis, Y. (2024). Advancing Farm Entrepreneurship and Agribusiness Management for Sustainable Agriculture. Agriculture (Switzerland), 14 (8), art. no. 1288, DOI: 10.3390/agriculture14081288
  • Ghorbani, M.A., Deo, R.C., Kashani, M.H. (2019). Artificial intelligence-based fast and efficient hybrid approach for spatial modelling of soil electrical conductivity. Soil and Tillage Research. Vol.186, pp.152–164. https://doi.org/10.1016/j.still.2018.09.012
  • Gómez-Sagasti, M.T., Anza, M., Hidalgo, J., Artetxe, U., Garbisu, C., Becerril, J.M. (2021). Recent trends in sustainable remediation of pb-contaminated shooting range soils: Rethinking Waste Management within a Circular Economy. Processes, Vol.9 (4), art. no. 572, DOI: 10.3390/pr9040572
  • Gulhane, V.A., Rode, S.V., Pande, C.B. (2023). Correlation analysis of soil nutrients and prediction model through iso cluster unsupervised classification with multispectral data. Multimedia Tools and Applications. Vol.82(2):2165–2184. DOI: 10.1007/s11042-022-13276-2
  • Holanda, R.B., Silva, P.M.P., do Carmo, A.L.V., Cardoso, A.F., da Costa, R.V., de Melo, C.C.A., Lucheta, A.R., Montini, M. (2020). Bayer Process Towards the Circular Economy—Soil Conditioners from Bauxite Residue. Minerals, Metals and Materials Series, pp. 107-114. DOI: 10.1007/978-3-030-36408-3_15
  • Homidov, H., Penev, N., Azimov, D., Maxmudov, A., Nencheva, I. (2024). Prospects of the introduction of digital technologies in agricultural activities. BIO Web Conf., Vol.114 (2024) 01005, DOI: https://doi.org/10.1051/bioconf/202411401005
  • Hossen, M.A., Diwakar, P.K., Ragi, S. (2021). Total nitrogen estimation in agricultural soils via aerial multispectral imaging and LIBS. Scientific Reports 11(1):12693. doi: 10.1038/s41598-021-90624-6
  • Hu, B., Xie, M., Li, H. (2023). Climate and soil management factors control spatio- temporal variation of soil nutrients and soil organic matter in the farmland of jiangxi province in South China. Journal of Soils and Sediments 23(6):2373–2395. https://doi.org/10.1016/j.catena.2024.108402
  • Inoue, Y., Saito, T., Iwasaki, A. (2020). Hyperspectral assessment of soil fertility in farm fields in fukushima decontaminated after the radioactive fallout. Soil Science and Plant Nutrition, pp.66(6):820–827. DOI:10.1080/00380768.2020.1753237
  • Jurgelāne-Kaldava, I., Batenko, A., Krivins, A., Durguti, E., Garškaitė-Milvydienė, K. (2024). Data security risks and their prevention: Latvian enterprises in the context of selected countries. Entrepreneurship and Sustainability Issues, 11(4), 78-90. http://doi.org/10.9770/jesi.2024.11.4(5)
  • Kastratović, R., Krivins, A., Veikša, I. (2024). Economic and legal aspects of foreign direct investment patterns in Serbia and Latvia. Access to science, business, innovation in the digital economy, ACCESS Press, 5(3), 440-458, https://doi.org/10.46656/access.2024.5.3(4)
  • Kazievish, S.J. (2020). Soil saltation as an external factor to increase transaction costs in the agricultural sector of Uzbekistan economy. Journal of Advanced Research in Dynamical and Control Systems, 12 (4 Special Issue), pp. 479-489. DOI: 10.5373/JARDCS/V12SP4/20201513
  • Keshavarzi, A., Kaya, F., Ba¸sayi˘git, L. (2023). Spatial prediction of soil micronutri- ents using machine learning algorithms integrated with multiple digital covariates. Nutrient Cycling in Agroecosystems. 127(1):137–153. DOI: 10.1007/s10705-023-10303-y
  • Kipane, A., Vilks A., Krivins, A. (2023). Forecasts of Long-term Progress in the Socio-cultural Sphere in the Context of Combating Economic Crime. Pakistan Journal of Criminology. Vol. 15, No. 04, October-December 2023 (49-67)
  • Krivins, A. (2014) Prevention of corruption in the sphere of public purchases: Interviews with experts. 4th International Interdisciplinary Scientific Conference SOCIETY, HEALTH, WELFARE. SHS Web of Conferences. Volume 10 00018. DOI: http://dx.doi.org/10.1051/shsconf/20141000018
  • Krivins, A. (2019) Legislative framework of in-house procurement. 7th International Interdisciplinary Scientific Conference SOCIETY. HEALTH. WELFARE. SHS Web of Conferences. Volume 68, 01026. DOI: https://doi.org/10.1051/shsconf/20196801026
  • Kriviņs, A., Vilks A. (2013) Prevention of corruption in public procurement: importance of general legal principles. Jurisprudence, 2013. No.20 (1), pp. 257-269. ISSN: 1392–6195.
  • Krivins, A., Vilks, A., Kipane, A. (2023). Corruption perception trends: European Union countries. Access to science, business, innovation in the digital economy, ACCESS Press, 5(1), 58-67. DOI: 10.46656/access.2024.5.1(4)
  • Lazarova, E., Pavlov, P., Petrova, M., & Shalbayeva, S. (2023). Analysis and assessment of infrastructural potential in rural territories. Economics Ecology Socium, 7(1), 1–14. https://doi.org/10.31520/2616-7107/2023.7.1-1
  • Li, X., Ding, J., Liu, J. (2021). Digital mapping of soil organic carbon using sentinel series data: a case study of the ebinur lake watershed in xinjiang. Remote Sensing. 13(4):769. https://doi.org/10.3390/rs13040769
  • Mahmoudzadeh, H., Matinfar, HR., Taghizadeh-Mehrjardi, R. (2020). Spatial pre- diction of soil organic carbon using machine learning techniques in Western Iran. Geoderma Regional. 21:e00260. DOI: 10.1016/j.geodrs.2020.e00260
  • Manganda, A.S., Sehnem, S., Lara, A.C. (2024). Transition to the Circular Economy: Innovative and Disruptive Production Technologies Adopted by Agribusiness Start-ups. Environmental Quality Management, Vol.34 (1), art. no. e22293, DOI: 10.1002/tqem.22293
  • Mavroulidou, M., Gray, C., Gunn, M.J., Pantoja-Muñoz, L. (2022). A Study of Innovative Alkali-Activated Binders for Soil Stabilisation in the Context of Engineering Sustainability and Circular Economy. Circular Economy and Sustainability, Vol.2 (4), pp. 1627-1651. DOI: 10.1007/s43615-021-00112-2
  • Mishra, P., Singh, U., Pandey, C.M., Mishra, P., Pandey, G.(2019). Application of student's t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia, Vol. 22 (4), pp. 407-411.DOI: 10.4103/aca.aca_94_19
  • Mitchell, D. (2024). Despotic dominion and union Organising: Law, property, and the historical geography of class struggle in California agribusiness. Journal of Historical Geography, Vol.86, pp. 163-174. DOI: 10.1016/j.jhg.2024.08.002
  • Nguyen, H., Mai, T.L., Pham, T.T.T., Binh, D. (2024). Supply chain coordination in sustainable agribusiness development: an investigation from coffee exporters. Journal of Agribusiness in Developing and Emerging Economies, Vol.14 (4), pp. 657-675. DOI: 10.1108/JADEE-09-2022-0201
  • Oluseyi, A., Rowland, W., Mayowa, A., Oluwakemi, O., Oluwatoyin, A. (2024). Assessing the impact of green machines –production on the sustainability of agribusinesses in Nigeria. E3S Web of Conferences, 563, art. no. 02009, DOI: 10.1051/e3sconf/202456302009
  • Papadimou, S.G., Golia, E.E. (2024). Green and sustainable practices for an energy plant cultivation on naturally contaminated versus spiked soils. The impact of ageing soil pollution in the circular economy framework. Environmental Research, 246, art. no. 118130, DOI: 10.1016/j.envres.2024.118130
  • Parsaie, F., Farrokhian, Firouzi A., Mousavi, SR. (2021) Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map. Environmental Monitoring and Assessment 193:1–15. DOI: 10.1007/s10661-021-08947-w
  • Paschalidis, C., Sotiropoulos, S., Papakonstantinou, L., Petropoulos, D., Kavvadias, V., Paschalidis, D., Christodoulou, C. (2020). Soil resources and the role in agriculture sector of Greek economy. Environment and Ecology Research, 8 (3), pp. 70-75. DOI: 10.13189/eer.2020.080302
  • Penev, N., Petrov, M. (2021). Economic aspects and challenges in precision agriculture. Trakia Journal of Sciences, Vol. 19, Suppl. 1, pp 162-167. doi:10.15547/tjs.2021.s.01.024
  • Peng, Y., Wang, L., Zhao, L. (2021). Estimation of soil nutrient content using hyperspectral data. Agriculture 11(11):1129. https://doi.org/10.3390/agriculture11111129
  • Pukitis M., Mednieks, I. (2023). Classification of satellite images using Dynland technology. In Ninth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2023), Vol. 12786, pp. 118-125
  • Perera, A. (2024). Investor value orientation and environmental and social implications: a case of New Zealand agribusinesses. Social Responsibility Journal, 20 (7), pp. 1284-1299. DOI: 10.1108/SRJ-11-2023-0669
  • Revuelta Pérez, I., Gómez Expósito, Á. (2024). General concepts and principles of Law 7/2022 on waste and contaminated soils for a circular economy [Conceptos y principios generales de la Ley 7/2022, de residuos y suelos contaminados para una economía circular]. Cuadernos de Derecho Local, 2024 (65), pp. 14-42. DOI: 10.61521/cuadernosderecholocal.65.1023
  • Shi, Y, Zhao, J, Song, X. (2021). Hyperspectral band selection and modeling of soil organic matter content in a forest using the ranger algorithm. PloS one 16(6):e0253385. https://doi.org/10.1371/journal.pone.0253385
  • Tavares, T.R., de Almeida E., Junior C.R.P. (2023). Analysis of total soil nutrient content with x-ray fluorescence spectroscopy (xrf): Assessing different predictive modeling strategies and auxiliary variables. AgriEngineering 5(2):680–697
  • Tireuov, K., Mizanbekova, S., Kalykova, B., Nurmanbekova, G. (2018). Towards food security and sustainable development through enhancing efficiency of grain industry, Entrepreneurship and Sustainability Issues 6(1): 446-455. https://doi.org/10.9770/jesi.2018.6.1(27)
  • Tireuov, K., Mizanbekova, S., Kalykova, B., Nurmanbekova, G. (2019). Methods and instruments of government control of grain products subcomplex, Entrepreneurship and Sustainability Issues 7(1): 763-772. https://doi.org/10.9770/jesi.2019.7.1(54)
  • Tireuov, KM, Akhmetov, KA, Kozhamkulova, ZZ, Seidalieva, GO. (2020). Formation of key basic elements of the resource potential of agricultural enterprises of the Republic of Kazakhstan. Turismo Estudos e Práticas – RTEP. No. 2 (2020): Geplat: Caderno Suplementar, 1-15
  • Tireuov, K., Mizanbekova, S., Aitkhozhayeva, G., Mizanbekov, I. (2023). Public-private partnerships for sustainable development of agriculture, Entrepreneurship and Sustainability Issues 11(1): 98-112. https://doi.org/10.9770/jesi.2023.11.1(6)
  • Umantseva, A., Hulgård, L., Hauggaard-Nielsen, H. (2023). A passion for soil: Solidarity economy and regenerative agriculture. Solidarity Economy: Alternative Spaces, Power and Politics, pp. 102-115. DOI: 10.4324/9781003306344-8
  • Watson, A. (2017). Pioneering a rural identity on the canadian shield: Tourism, household economies, and poor soils in Muskoka, Ontario, 1870-1900. Canadian Historical Review, 98 (2), pp. 261-293. DOI: 10.3138/chr.3783
  • Wernli, M., Chan, K.-F. (2023). Provocation Soil Trust: designing economies inside an interspecies world of feeders. Journal of Cultural Economy, 16 (4), pp. 594-603. DOI: 10.1080/17530350.2023.2239823
  • Winter, J.C.F. (2013). Using the student's t-test with extremely small sample sizes. Practical Assessment, Research and Evaluation, 18 (10), pp. 1-12
  • World Bank (2024). Multiple sources compiled processed by Our World in Data. “Share of GDP from agriculture” [dataset]. World Bank and OECD, “World Development Indicators” [original data]. Retrieved November 6, 2024 from https://ourworldindata.org/grapher/agriculture-share-gdp
  • Xu, Y., Li, B., Shen, X. (2022). Digital soil mapping of soil total nitrogen based on Landsat 8, Sentinel 2, and Worldview-2 images in smallholder farms in Yellow River Basin, China. Environmental Monitoring and Assessment. Vol.194(4):282. DOI: 10.1007/s10661-022-09902-z
  • Yang, P., Hu, J., Hu, B., Luo, D., Peng, J. (2022). Estimating Soil Organic Matter Content in Desert Areas Using In Situ Hyperspectral Data and Feature Variable Selection Algorithms in Southern Xinjiang, China. Remote Sensing. Vol. 14(20):5221. https://doi.org/10.3390/rs14205221
  • Zhang, J., Ji, D., Du, D. (2020). Temporal paradox in soil potassium estimations using spaceborne multispectral imagery. Catena, Vol.194:104771. https://doi.org/10.1016/j.catena.2020.104771
  • Zhang, Y., Li, M., Zheng, L. (2019) Spectral features extraction for estimation of soil total nitrogen content based on modified ant colony optimisation algorithm. Geoderma, Vol.333, pp.23–34. https://doi.org/10.1016/j.geoderma.2018.07.004
  • Zia, H, Harris, NR, Merrett, GV. (2019). A low-complexity machine learning nitrate loss predictive model–towards proactive farm management in a networked catchment. IEEE Access 7:26707–26720. DOI: 10.1109/ACCESS.2019.2901218

Publish your science journal

If you like ACCESS journals system, you can publish your journal with us at a reasonable price